Summary of presentation by M. Neuberger on Dec. 9th, 2016 at College of Physicians in Vienna

THS is estimated to take weeks to months to degrade in controlled environments Neonatal intensive care unit: infants protected from SHS, but exposure to THS from visiting household smokers (all < 10 cig./day)

NC	44	1160	4960	90	818
<lod< td=""><td>0.3</td><td>0.2</td><td>NC</td><td>0.2</td><td>0.2</td></lod<>	0.3	0.2	NC	0.2	0.2
0.3	2.5	5.5	34.2	1.2	3.4
					rooming in
NC	0.17	0.36	NC	0.37	5.01
NC	0.63	0.46	NC	<loq< td=""><td>31.58</td></loq<>	31.58
NC	0.47	1.64	NC	1.58	12.38
	<lod 0.3 NC NC</lod 	<lod 0.3<br="">0.3 2.5 NC 0.17 NC 0.63</lod>	<lod 0.17="" 0.2="" 0.3="" 0.36="" 0.46<="" 0.63="" 2.5="" 5.5="" nc="" td=""><td><lod 0.2="" 0.3="" nc<="" p=""> 0.3 2.5 5.5 34.2 NC 0.17 0.36 NC NC 0.63 0.46 NC</lod></td><td><lod 0.3<="" td=""> 0.2 NC 0.2 0.3 2.5 5.5 34.2 1.2 NC 0.17 0.36 NC 0.37 NC 0.63 0.46 NC <<loq< td=""></loq<></lod></td></lod>	<lod 0.2="" 0.3="" nc<="" p=""> 0.3 2.5 5.5 34.2 NC 0.17 0.36 NC NC 0.63 0.46 NC</lod>	<lod 0.3<="" td=""> 0.2 NC 0.2 0.3 2.5 5.5 34.2 1.2 NC 0.17 0.36 NC 0.37 NC 0.63 0.46 NC <<loq< td=""></loq<></lod>

Northrup et al. 2015

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol Morthrup et al. 2015 metabolite of NNK: THS off-gassing or remnant from prenatal exposure (half-life 10-16 days)

trans-3'-hydroxycotinine & cotinine

metabolites of nicotine: THS re-emission (cotinine half-life 16-22 h)

THS-related harm: 5–60% of SHS¹, cardiovascular & lung disease (inflammatory cytokines in asthma),² hinders respiratory development in animals. In-vitro DNA damage and impaired wound healing. 5

- 1. Sleiman et al. Environ Sci Technol 2014;48:13093–101.
- 4. Hang B, Sarker AH, Havel C, et al. Mutagenesis 2013;28:381–91.

2. Martins-Green et al. PLoS ONE 2014;9:e86391.

- 5. Prins & Wang. J Proteome Res 2013;12:1282-8
- 3. Rehan et al. Am J Physiol Lung Cell Mol Physiol 2011;301:L1–8.